Le référentiel Ω-8 présente la démarche adoptée par l’INERIS pour l’étude des feux torche (ou jets enflammés).
-
Il s’inscrit dans une démarche de valorisation du savoir-faire de l’INERIS auprès des pouvoirs publics, des industriels et du public.
Le référentiel Ω-8 présente la démarche adoptée par l’INERIS pour l’étude des feux torche (ou jets enflammés).
Ce rapport présente l’analyse du retour d’expérience menée par l'INERIS en préalable à l'analyse préliminaire des risques sur la sécurité des véhicules électriques. L'analyse est focalisée sur les nouveaux systèmes de stockage et de gestion de l’énergie électrique (batteries au Lithium principalement, supercapacités) pour lesquels la forte densité énergétique, et le principe de fonctionnement même, engendrent un danger intrinsèque d’emballement thermique et de scénarios accidentels associés (incendies, fuites d’électrolytes, explosion) qui doit être parfaitement évalué et géré. En sus du risque chimique, le risque électrique dans toute sa dimension doit également être pris en compte. En effet, la maîtrise de ces risques dans les conditions d’exploitation à forte puissance du VE et au-delà de l’utilisation sur tout le cycle de vie de la filière est au cœur de la réflexion sécurité suscitée par le déploiement du Véhicule électrique en France.
Tout stockage d’énergie engendre un risque plus ou moins élevé de libération accidentelle de cette énergie (le réservoir de carburant du véhicule thermique n’échappe pas à la règle). Mais pour ce qui concerne les technologies lithium, chacun a en mémoire les quelques accidents peu nombreux, mais largement rapportés par les médias, qui ont affecté différents appareils portables (ordinateurs principalement), dont les batteries reconnues défectueuses ont fait l’objet de rappels multiples et extrêmement coûteux pour les fabricants. On notera au demeurant que ces incidents bien connus sont survenus environ 15 ans après le lancement, par Sony, de la commercialisation des batteries rechargeables basées sur le système électrochimique lithium-ion. Ce constat montre qu’il est important de rester attentif aux questions de sécurité tant lors de ruptures technologiques importantes que lors d’une montée en puissance d’une technologie donnée, en réponse aux attentes du marché.
Au-delà de la prise de conscience que ces systèmes de stockage d’énergie performants engendrent de manière intrinsèque une problématique sécurité à prendre en compte à sa juste mesure, il est plus qu’utile d’examiner de manière systématique l’accidentologie connue en matière de fabrication, stockage, utilisation, transport, charge et recyclage des accumulateurs d’énergie électrochimique, en mettant bien sûr l’accent sur les technologies les plus proches de celles qui sont ou seront très prochainement utilisées dans le cadre de la montée en puissance de la filière véhicule électrique. Cette analyse est l’objet essentiel de ce rapport.
Les nouveaux systèmes de stockage et de gestion de l’énergie électrique (batteries au Lithium, supercapacités…) et leurs interfaces avec le train propulseur du côté véhicule et les bornes de charge du côté réseau constituent les technologies clés, en pleine mutation, dont la maturité conditionne le déploiement de la filière électrique.
Les enjeux de sécurité déjà mis en évidence lors de la commercialisation des premières piles au lithium et batteries au lithium rechargeables destinés aux équipements de grande consommation (ordinateurs portables, téléphonie mobile, lecteurs de DVD -voir le rapport sur le REX-) n’ont fait que se renforcer avec l’augmentation des densités énergétiques massiques et volumiques des batteries.
Ainsi, l'INERIS a constitué une synthèse présentant quelques données de base sur ces technologies, comprenant un bref aperçu historique du développement, ainsi que quelques éléments contextuels sur les développements en cours.
P.I.V.E.R.T., Picardie Innovations Végétales, Enseignements et Recherches Technologiques, est un centre de recherche, d’innovation, d’expérimentation et de formation dans la chimie du végétal à base de biomasse oléagineuse (colza, tournesol, etc.).
L'Association Française pour l'Hydrogène et les Piles à Combustible (AFHYPAC) a pour objet de promouvoir les technologies de l'hydrogène énergie et des piles à combustible. Elle est chargée en particulier de l'animation cette filière industrielle en France.
L'association présente sur son site web de la documentation sur l'hydrogène en tant que vecteur d'énergie.
Le déploiement à grande échelle de la filière « véhicule électrique » implique pour les transports individuels et collectifs, des bouleversements profonds au-delà de l’électrification des véhicules proprement dite, aussi bien des habitudes de conduite, que des différentes infrastructures à mettre en place (stations de charges, installations de maintenance et de réparation…) ou de filières de recyclage, encore quasiment inexistantes pour les nouvelles technologies envisagées dans les véhicules.
Ces modifications vont s’accompagner de l’émergence de nouveaux risques qu’il est primordial d’identifier rapidement afin de pouvoir les évaluer et proposer les principales mesures à mettre en place pour pouvoir les prévenir.
La présente étude a pour principal objectif de :
L’explosion accidentelle d’un nuage de gaz inflammables à l’air libre, phénomène souvent désigné par l’acronyme V.C.E., tiré de l’anglais « Vapour Cloud Explosion », peut conduire à des pertes en vies humaines et à des dégâts matériels extrêmement importants. A cet égard, les explosions accidentelles survenues en Angleterre à Flixborought en 1974 et en France à La Mède en 1992 sont des exemples particulièrement marquants.
Dès lors, la maîtrise des risques technologiques passe notamment par une évaluation des conséquences potentielles des risques d’explosions de gaz. De nombreux travaux ont été entrepris de par le monde dans ce sens et à ce jour le nombre de méthodes qui peuvent être employées pour quantifier le risque d’explosion de gaz est de l’ordre de quelques dizaines (CCPS, 1994) si toutes les variantes des principales méthodes sont dénombrées.
En France, jusqu’à présent, la méthode principalement employée était celle de l’équivalent TNT telle que préconisée par Lannoy (Lannoy, 1984). Toutefois, avec l’évolution des connaissances et les publications détaillées d’autres méthodes, la tendance de ces 10 dernières années environ va dans le sens d’une plus grande diversité. Dès lors, le besoin a été ressenti d’établir un guide, objet du présent document, pour :
− recenser les différentes méthodes disponibles,
− les décrire,
− les analyser,
− et enfin dégager quelques recommandations pratiques quant à leur utilisation.
Le champ de recensement a été volontairement limité aux méthodes qui pour être mises en œuvre ne nécessitent que l’application de principes généraux et l’emploi d’abaques ou de programmes de calcul utilisables rapidement.
Ce guide fait suite au rapport INERIS « État des lieux et éléments critiques sur les méthodes d'utilisation des valeurs seuils de toxicité aiguë par inhalation en France » paru en juillet 2008.
Ce précédent rapport présente un état des lieux des pratiques d’utilisation des seuils de toxicité aiguë par inhalation dans le cadre de l’évaluation réglementaire des risques industriels en situation accidentelle (études de dangers). À travers ce précédent rapport, il a été mis en lumière une grande partie des différentes pratiques, utilisées par les acteurs du domaine, pour quantifier les effets toxiques, générés sur d’éventuelles cibles humaines, lors de la dispersion dans l’atmosphère d’une ou plusieurs substances toxiques. Parmi ces pratiques identifiées, certaines sont valides d’un point de vue scientifique et technique ou acceptables d’un point de vue pragmatique parce qu’elles conduisent à des résultats prudents, d’autres en revanche sont à éviter, voire à proscrire.
Le présent guide complète le rapport d’état des lieux précédent dans l’analyse critique des différentes pratiques identifiées. Il se veut pragmatique, en indiquant les bonnes pratiques d’utilisation des seuils de toxicité aiguë dans le domaine de l’évaluation des risques industriels en situation accidentelle, dans l’état actuel des connaissances. Ce document est à considérer comme une aide à l’utilisation appropriée des seuils de toxicité aiguë par inhalation plutôt que comme un guide contraignant.
Le NIOSH Pocket Guide to Chemical Hazards (NPG) est une ressource d'informations relatives à l'hygiène et et la sécurité industrielles, à l'usage des travailleurs, employeurs, et professionels de la santé au travail.
Le NPG présente des informations synthétiques sur plusieurs centaines de substances chimiques ou de groupes de substances chimiques susceptibles d'être présents dans les environnements de travail. Les informations fournies visent à aider les utilisateurs à appréhender les dangers chimiques au travail.