Phénomènes dangereux et Terme source - derniers contenus mis en ligne

Les documents de synthèse relatifs à une barrière de sécurité (B.S.) constituent un corpus pour la maîtrise des risques technologiques majeurs, à l’usage des professionnels de la maîtrise des risques (industriels, administration, bureaux d’études, etc.).Chaque document présente une synthèse sur des dispositifs de sécurité (barrière technique ou humaine de sécurité), organisée par type d’équipement et fonction de sécurité.
Les informations présentées sont les suivantes :

  • fonction de sécurité assurée ;
  • principe de fonctionnement du ou des dispositifs ;
  • critères d’évaluation de la performance (efficacité, temps de réponse, mode de défaillance et niveau de confiance, etc.) ;
  • suivi de la performance dans le temps.

Ce document présente les informations relatives aux évents d’explosion qui représentent aujourd’hui la solution de mitigation des effets des explosions confinées la plus répandue dans l’industrie. Ces évents d’explosion sont essentiellement utilisés afin d’évacuer des gaz chauds d’une enceinte en vue de décharger la pression d’explosion et d’empêcher son éclatement.
Les différentes technologies d’évents d’explosion sont d’abord présentées en expliquant leur principe de fonctionnement, leurs avantages et leurs limites d’utilisation. Des informations sur le dimensionnement et l’installation de ces équipements sont apportées afin de pouvoir juger de leur efficacité selon leurs conditions d’utilisation. Ensuite, le document présente des modes de défaillance courants des évents ainsi que des notions de fiabilité afin de guider l’évaluation du niveau de confiance des dispositifs. Enfin, des recommandations pour assurer le maintien des performances dans le temps sont présentées.

Ce document présente les phénomènes physiques associés à la dispersion atmosphérique de gaz toxique ou inflammable ainsi que les familles de modèles permettant de les représenter et en estimer les effets.Les principaux facteurs influençant la dispersion atmosphérique sont :

  • les conditions de rejet (gaz sous pression ou non, gaz liquéfié, …) qui définissent le terme source ;
  • l’environnement dans lequel se disperse le panache : l’occupation du sol, les obstacles (bâtiments industriels,bâtiments résidentiels et tertiaires...), le relief naturel ;
  • les conditions météorologiques et l'écoulement atmosphérique près du sol étant influencé essentiellement par le vent et l’état de stabilité de l’atmosphère (forte stabilité, instabilité, …).

Une large gamme de familles de modèles numériques de dispersion atmosphérique adaptés aux rejets accidentels existe et une synthèse descriptive théorique est présentée dans ce rapport ; modèles intégraux ou gaussiens, modèles tridimensionnels de mécanique des fluides eulérien et lagrangiens.b.Les guides de bonnes pratiques relatifs à chacune des familles de modèles s’ils existent sont référencés.Une analyse critique de l’évaluation des modèles et une revue des protocoles d’évaluation dans le cadre descénarios accidentels sont réalisées.Une synthèse des domaines d’application pour chacune des familles de modèles est également présentée.

Ce rapport présente une synthèse de l’état des connaissances sur le phénomène d’explosion confinée.
Il constitue un complément du rapport Omega 32-UVCE (Les explosions non confinées de gaz et de vapeurs sur les explosions non confinées) sur les explosions non confinées, il est focalisé sur les explosions de gaz et de vapeurs. Les spécificités des explosions confinées de poussières et de mélanges hybrides y sont abordées de manière marginale.
Ce document s’articule autour de 3 chapitres, dont les objectifs respectifs sont de présenter :

  • certains accidents ayant conduit à des dégâts considérables et d’en extraire des enseignements quant au déroulement d’une explosion confinée ;
  • l’ensemble des conditions nécessaires à l’occurrence d’une explosion confinée et les principaux paramètres influençant la propagation de la flamme et les effets de l’explosion sur son environnement ;
  • une synthèse des principales méthodes disponibles pour estimer les effets de surpression engendrés par une explosion confinée et leurs limites.

Le présent rapport Omega-UVCE fait suite à l’analyse des grands accidents tels que Buncefield, Flixborough, Ufa, Port Hudson qui ont montré qu’il n’y a pas de lien direct entre l’inventaire des fuites (volume inflammable et taille du nuage inflammable) et la sévérité de l’accident. L’étude spécifique de l’influence des instabilités de combustion sur la propagation de la flamme a permis de mettre en place un jeu de lois analytiques permettant de quantifier l’accroissement de vitesse induit par une perturbation que rencontre la flamme sur son parcours. Ce modèle est appelé modèle de Taylor généralisé. L’application numérique de ce modèle permet de proposer une amélioration de l’application de la méthode multi-énergie aux situations industrielles notamment en ce qui concerne la détermination de l’indice de sévérité de l’explosion. Dans ce rapport, 2 situations d’accident industriel sont présentées : - L’explosion de nuage dérivant suite à une évaporation de nappe d’hydrocarbures. Il apparaît, dans l’exemple étudié, que la phase de propagation isotrope de flamme produit des effets de pression de l’ordre de 300 mbar alors que la propagation azimutale de flamme produit une surpression de l’ordre de 40 mbar. - Un UVCE suite à une fuite de gaz à haute pression. Lors de l’explosion d’un jet gazeux turbulent, il est possible de déterminer le niveau de surpression atteint dans le nuage en fonction d’une donnée caractéristique de l’écoulement.

Pour l'application de l'arrêté ministériel relatif à la prévention des risques présentés par les silos et les installations de stockage de céréales, de grains, de produit alimentaire ou de tout autre produit organique dégageant des poussières inflammables.

Guide technique relatif aux valeurs de référence des seuils d'effets des phénomènes accidentels des installations classées (Octobre 2004)
NB : Ce guide a été diffusé en accompagnement de l'Arrêté du 22 octobre 2004, qui a été abrogé par l'Arrêté du 29 septembre 2005.

Les valeurs seuils ERPG (Emergency response planification Guidelines) développées par l'AIHA (Etats-Unis) sont des valeurs de toxicité aiguë par inhalation d'urgence en situation de rekjet accidentel de substancs toxiques, pour un temps d'exposition d'une heure. Elles se décomposent en 3 niveaux dont les définitions sont rappelées ci-dessous :

- ERPG-1 : concentration atmosphérique maximale en dessous de laquelle il est probable que presque tous les individus pourraient être exposés pendant plus d'une heure sans ressentir davantage que des légers effets transitoires ou détecter une odeur.

- ERPG-2 : concentration atmosphérique maximale en dessous de laquelle il est probable que presque tous les individus pourraient être exposés pendant plus d'une heure sans ressentir ou développer d'effets irréversibles ou incapacitants.

- ERPG-3 : concentration atmosphérique maximale en dessous de laquelle il est probable que presque tous les individus pourraient être exposés pendant plus d'une heure sans ressentir ou développer d'effets menaçant sa vie.

L'accès aux valeurs-seuils est désormais payant. Des valeurs d'ERPG peuvent être trouvées dans la base de produits chimiques CAMEO Chemicals CAMEO Chemicals | NOAA  

Le principe de ces dispositifs est d’éviter qu’une explosion démarrant dans un équipement ne se propage au reste de l’installation ou à des autres équipements via le réseau de tuyauterie. Une explosion cheminant dans une tuyauterie voit sa vitesse et sa pression augmenter fortement la rendant très rapidement incontrôlable. On peut utiliser un dispositif d’isolement d’explosion ou de découplage afin de stopper ou minimiser les conséquences de cette explosion.

Les détecteurs de flamme équipent des entrepôts couverts, des installations de GIL, des installations de dépôts de liquides inflammables. La fonction de sécurité assurée par un détecteur de flamme consiste à détecter la naissance d’un feu et à déclencher un signal d’alarme. Les détecteurs de flamme font partie de l’installation de détection incendie qui a pour objectif de déceler et de signaler le plus tôt possible la naissance d’un incendie en évitant au maximum de délivrer des alarmes intempestives. Le détecteur de flamme détecte toute élévation de température ou présence de produits issus d’une combustion et transmet l’information à une unité de traitement, qui peut déclencher l’arrosage et la mise en sécurité du site. Cette fiche fournit des informations et des conseils sur la façon d’évaluer le niveau de performance. Les éléments de cette fiche permettent de vérifier le respect des critères de performance tels qu’ils sont définis dans l’OMEGA 10 en termes d’« efficacité », de « temps de réponse » et de « niveau de confiance ».

Le présent guide fait partie des compléments techniques pour les services instructeurs des PPRT (Directions Régionales de l’Environnement, de l'Aménagement et du Logement) et pour les services départementaux de secours et de protection civile, dont l’avis est demandé sur les objectifs de performance de résistance et de protection du bâti face à un aléa technologique thermique, dans le but de protéger les personnes et non les biens. Il a pour objet de proposer des prescriptions techniques de protection du bâti face à un aléa technologique thermique qui seront retenues dans le règlement du PPRT, ou qui seront imposées par les services de secours dans le cadre de l’élaboration des plans de secours, et de leur avis sur d’éventuelles constructions nouvelles en zones à risques. Le guide s’appuie sur le rapport d’étude sur la « Caractérisation et réduction de la vulnérabilité du bâti face à un phénomène dangereux technologique thermique ». Ces deux documents ont été réalisés conjointement par la société Efectis France, laboratoire agréé en résistance au feu par le Ministère de l’Intérieur et le Laboratoire National de Métrologie et d’Essais (LNE) agréé en réaction au feu par le Ministère de l’Intérieur, à partir de leurs bases de données respectives sur les matériaux et produits de la construction, leur connaissances de la réglementation et de la construction, et de leur compétences reconnus en matière de phénomènes dangereux thermiques.

Accéder aux autres compléments techniques PPRT

Complément technique relatif à l'effet toxique

Cahier technique de la vulnérabilité du bâti aux effets thermiques transitoires

Complément technique relatif à l'effet de surpression et son Cahier applicatif du complément technique de la vulnérabilité du bâti aux effets de surpression