Barrières techniques et humaines de sécurité - derniers contenus mis en ligne

Cette campagne d’essais de détecteurs de flamme a été réalisée dans le cadre d’un programme d'appui aux pouvoirs publics relatif à l’évaluation des performances des Barrières Techniques de Sécurité (BTS) mises en oeuvre dans l’industrie pour réduire les risques d’accidents majeurs. Les détecteurs de flamme sont utilisés à des fins de sécurité incendie, leur fonction étant de détecter la naissance d’un feu et de déclencher une alarme. Ils sont généralement implantés pour protéger des installations industrielles telles que :
- les raffineries,
- les plateformes de forage et de production offshore,
- les dépôts pétroliers,
- les installations de traitement et de stockage GNL/GPL,
- les turbines à gaz,
- les hangars d’avions.
L’objectif de cette campagne a été de mener une évaluation comparative des performances et des limites d’utilisation des détecteurs de flamme mis sur le marché pour un usage industriel à l’air libre (industrie de process type « oil & gas » - secteur pétrolier/chimie). Les paramètres de performance ont été étudiés, dans des conditions d’utilisation maîtrisées en laboratoire et dans des conditions d’utilisation réelles, pour différents types de feux1. La robustesse des détecteurs de flamme face à des conditions climatiques et des perturbations électromagnétiques sévères, ainsi que la sensibilité aux sources de fausses alarmes, ont également été appréhendées.
Les résultats doivent servir à éclairer les utilisateurs et les pouvoirs publics quant aux points importants à considérer pour ne pas altérer l’efficacité des détecteurs de flamme, notamment lorsqu’ils sont pris en compte dans les études de dangers en tant que composant d’une barrière technique de sécurité.
Les essais ont été réalisés entre 2009 et 2010 en collaboration avec SP Technical Research Institute of Sweden. Cinq constructeurs ont apporté leur concours et une trentaine de détecteurs ont été mis à l’épreuve.

La mise sous talus permet de protéger les sphères contre d’éventuelles agressions thermiques ou mécaniques. Elle permet aussi d'implanter un réservoir neuf de grande taille pour une emprise au sol extrêmement limitée.
La technique de couverture des réservoirs par une épaisseur de 0,60 m de Texsol a été reconnue équivalente à la mise sous talus de terre (épaisseur 1 m.) de ces mêmes réservoirs au sens de l’arrêté du 9 novembre 1989 relatif aux conditions d’éloignement auxquelles est subordonnée la délivrance de l’autorisation des nouveaux réservoirs de gaz inflammables liquéfiés.

La spécificité d'un détecteur représente sa capacité à ne détecter que le gaz pour lequel il a été choisi. En fonction de l'application, il peut être nécessaire de choisir un détecteur très spécifique ou au contraire capable de détecter une grande variété de gaz. On cherche le plus souvent à utiliser un détecteur spécifique du danger identifié.
La spécificité d'un détecteur dépend du principe de détection utilisé et quelquefois de certains paramètres de fonctionnement choisis.
Avant de choisir une technique de détection, il est important de connaître la nature du gaz ou de la vapeur qu'il s'agit de détecter dans la zone à surveiller. Il existe en effet quelques cas spécifiques pour lesquels certaines techniques sont à éviter. C'est le cas, par exemple, de la détection catalytique en présence de gaz organochlorés (effet inhibiteur)

Le clapet de fond sur wagon citerne est organe de sectionnement. Il est normalement en position fermée et son ouverture nécessite une action permanente sur son levier de manœuvre.
Il a pour fonction d’assurer la fermeture automatique des piquages dès lors ou son ouverture n’est plus maintenue, ce qui a pour effet d’arrêter le transfert du produit et d’isoler la citerne du wagon. Ceci est le cas notamment sur déplacement intempestif du wagon pendant les opérations de transfert de produit

Sous-titre : Application de l’arrêté ministériel du 4 octobre 2010.

Ce guide définit une méthodologie permettant aux exploitants de maîtriser le vieillissement des Mesures de Maîtrise des Risques Instrumentées (MMRI) et donc de maintenir leur performance dans le temps.

Il a été réalisé par un collège d’experts, de fournisseurs/fabricants de matériel et de représentants de l’administration et de l’industrie. Il présente des techniques et méthodes de gestion et de maîtrise du risque technologique lié au vieillissement des mesures de maîtrise des risques instrumentées (MMRI) exploitées dans les installations industrielles à risques au sens de l’arrêté du 10 mai 2000 modifié susceptibles de porter atteinte aux intérêts visés par l’article L. 511-1 du code l’environnement.

Il s'agit d'un document évolutif et révisable dans les mêmes conditions que celles qui ont prévalu à son élaboration. Il est le reflet de l’état de l'art, en l'état actuel des connaissances des experts ayant participé à son élaboration.

Ce document est un guide de type 1 selon la note de doctrine du 19 juin 2008 du directeur général de la prévention des risques. D’autres techniques ou méthodes peuvent être utilisées, sous réserve qu’elles fassent l’objet d’une tierce-expertise conformément aux dispositions de l’arrêté du 4 octobre 2010.

Ce guide s’inscrit dans le cadre de la mise en application du plan de modernisation (cf. articles 7 et 8 de l’arrêté ministériel du 4 octobre 2010).

Une soupape est un organe de sécurité : sa sollicitation doit être exceptionnelle. Sa position normale est la position fermée. Une soupape est conçue pour évacuer un débit gazeux et/ou liquide lorsque la pression du produit est supérieure à la pression de tarage de la soupape. La soupape commence à s’ouvrir à la pression de tarage de la soupape. Lorsque la pression interne redescend en dessous d’un seuil de pression inférieur à la pression de tarage, la soupape se referme.
L’ouverture de la soupape n’intervient généralement qu’après l’action d’autres dispositifs de limitation de pression (mise en sécurité par pressostat de pression haute, mise en sécurité par détection de niveau très haut dans le cas d’un sur-remplissage…).

Un rideau d'eau fixe est constitué, en bout de chaîne, par une tuyère sur laquelle sont fixées des buses à intervalle régulier. L'ensemble des pulvérisations forme l'écran d'eau, constitué d'une multitude de gouttelettes. Dans la plupart des cas, la géométrie obtenue pour chaque pulvérisation est conique (cône plein ou creux) avec un angle d'ouverture de 30 à 120° suivant les propriétés des buses.
Un rideau d'eau mobile est constitué par un ensemble lance – déflecteur qui transforme le jet bâton en jet "queue de paon" (180 ou 360°). Dans ce cas, l'écran d'eau est un film très fin, différent du rideau d'eau obtenu par pulvérisation (buse).

La fonction de sécurité associée à un mur ou une paroi coupe-feu est d'éviter la propagation d’un incendie d'un local à l’autre. Dans les entrepôts, les murs séparatifs coupe-feu sont notamment mis en œuvre pour le compartimentage en cellules de tailles réduites, afin de faire obstacle pendant une durée plus ou moins longue à la propagation du feu de la zone sinistrée vers une autre. Les murs coupe-feu permettent ainsi de limiter la taille de la zone en feu, ce qui a pour effet :

• de réduire les besoins en eau d’extinction ;
• de réduire les effets thermiques potentiels sur les cibles par diminution de la surface en feu (les flammes sont moins hautes) et/ou diminution de la façade rayonnante (longueur du front de flamme plus faible).
Cette fiche fournit des informations et des conseils sur la façon d’évaluer leur niveau de performance. Les éléments de cette fiche permettent de vérifier le respect des critères de performance tels qu’ils sont définis dans l'OMEGA 10 en termes
d'« efficacité », de « temps de réponse » et de « niveau de confiance ».

Les détecteurs à photo-ionisation sont principalement utilisés à des fins d’hygiène et de sécurité dans les lieux de travail mais ils peuvent aussi être utilisés à des fins de réduction des émissions industrielles des Composés Organiques Volatils (COV) au titre de la réglementation des Installations Classées pour la Protection de l’Environnement.
Comme énoncé par l’INRS (Institut National de Recherche et de Sécurité), les principales applications des détecteurs PID portatifs sont les suivantes :
- Protection du personnel, notamment lorsqu’un capteur PID est embarqué dans un appareil de détection multi-gaz
- Recherche de fuites sur installation et détection de niveau de pollution
- Aide à l’établissement d’une stratégie de prélèvement
- Aide à la validation d’un équipement de protection collective
Une campagne d’essais a été menée en 2010 et 2011 selon un protocole établi, en 2009, au sein d’une commission technique de l’EXERA composée des entreprises suivantes : INRS, INERIS, AREVA, LUBRIZOL, TOTAL, VEOLIA. Ce protocole s’est inspiré d’une évaluation déjà réalisée par l’INRS.
L’objectif de cette campagne était de comparer les performances métrologiques de détecteurs PID dans des conditions de laboratoire et de terrain. Cinq appareils de marque différente ont donc été testés sur un banc d’essais spécialement conçu
à cet effet ainsi que sur un site chimique industriel.

Les disques de rupture sont utilisés soit pour évacuer une surpression dans une enceinte chimique (par exemple, dans le cas d’un emballement thermique) ou soit pour limiter une surpression en cas de montée en pression accidentelle dans une enceinte ou dans une tuyauterie.
Un disque de rupture est un dispositif destiné à se rompre pour une valeur prédéterminée de la pression appelée pression de rupture. Ce dispositif fonctionne par déchirement ou par fragmentation d’un élément étalonné sous l’action de l’excès de pression.
Cette fiche fournit des informations et des conseils sur la façon d’évaluer le niveau de performance. Les éléments de cette fiche permettent de vérifier le respect des critères de performance tels qu’ils sont définis dans l’OMEGA 10 en termes d’« efficacité », de « temps de réponse » et de « niveau de confiance ».