Explosion

Réaction soudaine d'oxydation ou de décomposition produisant une augmentation de température, de pression, ou des deux simultanément. NF EN 1127-1

Ce rapport est spécifiquement consacré à la phénoménologie de l’explosion de poussières et plus particulièrement à la mise en évidence de lois physiques qui peuvent être mises en œuvre soit dans un souci d’évaluation du risque soit dans une perspective de prévention/protection. L’application de ces connaissances pour des situations spécifiques (IC, sécurité au travail,..) ne fait pas partie de ce document ni leur valorisation dans le cadre d’une méthode de prévention/protection (distances de sécurité, certification,...). Ces aspects sont notamment traités dans d'autres rapports de la série Oméga : Omega 14 Sécurité des procédés mettant en œuvre des pulvérulents combustibles et Omega 1 - Guide pour la conception et l'exploitation de silos de stockage de produits agro-alimentaires vis-à-vis des risques d'explosion et d'incendie.

Le rapport présente une synthèse de l’état des connaissances afin de déterminer les effets d‘impact de projectiles sur les structures béton ou métalliques rencontrées sur site industriel (enceinte sous pression, réservoirs métalliques, canalisations, ou encore salles de contrôle par exemple). Il décrit le phénomène d’impact et présente les principaux outils de modélisation utilisables classés en 3 catégories : 

-             Les corrélations empiriques qui sont les plus fréquemment utilisées pour l’évaluation des effets. Elles exploitent des bases de données expérimentales pour établir des relations entre la profondeur de pénétration / l’épaisseur limite de perforation et les principaux paramètres du calcul (vitesse d'impact, géométrie/dimensions du projectile, caractéristique du projectile, …). Elles permettent d’évaluer les effets locaux générés par l’impact de projectiles non déformables sur des matériaux tels que le béton, le béton armé ou encore l’acier.

-             Les méthodes analytiques fondées généralement sur une résolution plus ou moins simplifiée de l'équation différentielle décrivant le système. Elles permettent d’évaluer aussi bien la réponse locale que la réponse globale de la structure. Cette approche est souvent un bon compromis permettant de faire des gains économiques par rapport à une approche empirique et de ne pas surdimensionner les moyens de protection à mettre en œuvre.

-             Les méthodes numériques souvent basées sur des méthodes par éléments finis ou encore des méthodes discrètes permettant de coupler la réponse du projectile avec celle de la cible et simuler de manière plus réaliste le phénomène d’impact et d’endommagement de la cible.. Ces modèles complètent les approches précédentes pouvant notamment apporter une vraie plus-value dans le cadre de structure composite (béton armé par exemple) ou complexe.

Le présent rapport vise à décrire la démarche adoptée par l’INERIS pour déterminer les effets des explosions et incendies envisageables lors d’accidents industriels. Il s’agit d’un des sujets retenus dans le thème "phénomènes physiques" cité ci-dessus.

L’objectif de ce document est de :
• décrire les outils de modélisation utilisables pour prévoir le comportement des structures lors de l’agression,
• présenter les moyens expérimentaux pour la détermination des paramètres pertinents pour la prédiction de la vulnérabilité des structures,
• décrire les principaux dispositifs de protection des structures.

Tôt le matin du 11 décembre 2005, plusieurs explosions ont eu lieu sur le site de stockage d'hydrocarbures de Buncefield, à Hemel Hampstead, dans le Hertfordshire (Grande-Bretagne). Au moins une des explosions a été de très grande ampleur. Un incendie a suivi, qui a détruit la majeur partie du site. Plus de 40 personnes ont été blessées, mais il n'y a eu aucun décès. Des dégâts très importants ont été causés aux bâtiments environnants (locaux commerciaux et habitations) et une grande étendue autour du site a été évacuée sur les recommandations des services de secours. L'incendie a duré pendant plusieurs jours, détruisant la majeure partie du site et produisant de grands nuages de fumée noire.
Une synthèse intitulée "Buncefield: Why did it happen?" de 2011 est accessible en suivant le lien ci-dessus.
Enquête post-accidentelle

      Le Health and Safety Executive (HSE) a coordonné une enquête avec l'Environment Agency (EA), dont les résultats sont décrits dans le rapport final daté de 2008, disponible en trois volumes :

Volume 1,
Volume 2a,
Volume 2b.

Les arrête-flammes sont utilisés sur des conduites de procédé ou des évents de stockage véhiculant des gaz ou des vapeurs inflammables, qui mélangés à de l'air peuvent exploser. L’arrête flammes empêche la propagation de cette explosion. On distingue les arrête flammes anti-déflagrations et les arrête flammes anti-détonations.

La Communauté européenne a adopté deux directives relatives aux atmosphères explosives (dites "directives ATEX") dont l'entrée en vigueur a eu lieu le 1er juillet 2003. La mise en oeuvre de ces deux textes soulève de nombreuses questions.
Cet ouvrage a pour objectif de fournir les éléments nécessaires à la mise en oeuvre de cette nouvelle réglementation en présentant une démarche pour son application, ainsi que quelques mesures de prévention ou de protection contre le risque d'explosion.

ED 945

JANES A., CHAINEAUX J., CZYZ A., BARDET P., GALTIER Y, LESNE P, LYS J., MENARD A., PETIT JM

Brochure de 52 pages

La banque de données GESTIS - CARATEX POUSSIERES comprend actuellement les caractéristiques d’inflammabilité et d’explosivité de 4605 échantillons de poussières.

Pour y accéder, cliquer sur l'adresse URL indiquée.

Note documentaire ND2070 (INRS) - Caractéristiques d'explosivité de poussières industrielles. Détermination expérimentale sur six échantillons représentatifs

    Après avoir rappelé le mécanisme des explosions de poussières ainsi que quelques caractéristiques des atmosphères poussiéreuses, cet article présente les résultats expérimentaux de détermination des caractéristiques d'explosivité, obtenus avec six produits pulvérulents industriels transmis par les services prévention de Caisses régionales d'assurance maladie (CRAM), et réalisés par l'INERIS (Institut national de l'environnement industriel et des risques) dans le cadre d'une convention signée avec l'INRS.
    Le programme expérimental retenu propose un ensemble raisonnable de tests validés et progressifs auxquels pourraient recourir les responsables d'entreprise pour connaître les caractéristiques d'explosivité des poussières présentes dans leurs unités, caractéristiques indispensables à la mise en place des moyens de protection et de prévention.

Les exploitants d'installations industrielles sont dans l'obligation de réaliser un classement de zones pour les emplacements où une atmosphère explosive dangereuse est susceptible d'apparaître à cause du risque d'explosion de poussières.
Ce classement est basé sur la probabilité d'occurrence d'une atmosphère explosive et permet la sélection des équipements possédant un niveau de sécurité adapté pour l'utilisation dans ces emplacements.
L'objectif de ce rapport est de présenter une méthode, basée sur des normes ou des projets de normes, permettant de classer ces zones.
Ce rapport donne la position de l'INERIS à ce jour, compte tenu de l'état des connaissances et de l'évolution des textes disponibles (directives, normes...).

Attention, ce rapport daté de 2001 est sorti avant que la Directive 1999/92/CE soit transposée en droit français.

La spécificité d'un détecteur représente sa capacité à ne détecter que le gaz pour lequel il a été choisi. En fonction de l'application, il peut être nécessaire de choisir un détecteur très spécifique ou au contraire capable de détecter une grande variété de gaz. On cherche le plus souvent à utiliser un détecteur spécifique du danger identifié.
La spécificité d'un détecteur dépend du principe de détection utilisé et quelquefois de certains paramètres de fonctionnement choisis.
Avant de choisir une technique de détection, il est important de connaître la nature du gaz ou de la vapeur qu'il s'agit de détecter dans la zone à surveiller. Il existe en effet quelques cas spécifiques pour lesquels certaines techniques sont à éviter. C'est le cas, par exemple, de la détection catalytique en présence de gaz organochlorés (effet inhibiteur)